Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
2.
Sustainability ; 14(10):6341, 2022.
Article in English | ProQuest Central | ID: covidwho-1875755

ABSTRACT

China’s new-type urbanisation, as a national strategy, is one of the reasons why the leap in development has been made in the last decade. Existing studies mainly focus on the status and outcomes of china’s new-type urbanisation while stressing not enough the overlooked aspects of new-type urbanisation policies that are currently in use. This paper aims at exploring the highlighted and overlooked aspects of policies of three key elements in China’s new-type urbanisation: population, land, and industry and their implementations. The complicated process and contradictions between formulation and implementation of the policies are extracted by analysing set goals and implemented situations of relative indicators from the three elements. The policies drove the population from separation to unity between household registered and actual residences, land from human land allometry to balance, and industry from traditional industrialisation to emerging service. Although these policies had significant achievements in the transitions of formulation, they still needed to be further implemented. Furthermore, this paper discusses corresponding reasons and potential directions to better the adoption of these policies for greater inclusion and systematic efficiency. The findings could not only highlight directions that improve existing policies of China’s new-type urbanisation but also provide guidance for inclusive and sustainable urbanisation practices in China as well as other cities in similar situations all over the world.

3.
Immunity ; 54(7): 1463-1477.e11, 2021 07 13.
Article in English | MEDLINE | ID: covidwho-1263294

ABSTRACT

Acute respiratory distress syndrome (ARDS), an inflammatory condition with high mortality rates, is common in severe COVID-19, whose risk is reduced by metformin rather than other anti-diabetic medications. Detecting of inflammasome assembly in post-mortem COVID-19 lungs, we asked whether and how metformin inhibits inflammasome activation while exerting its anti-inflammatory effect. We show that metformin inhibited NLRP3 inflammasome activation and interleukin (IL)-1ß production in cultured and alveolar macrophages along with inflammasome-independent IL-6 secretion, thus attenuating lipopolysaccharide (LPS)- and SARS-CoV-2-induced ARDS. By targeting electron transport chain complex 1 and independently of AMP-activated protein kinase (AMPK) or NF-κB, metformin blocked LPS-induced and ATP-dependent mitochondrial (mt) DNA synthesis and generation of oxidized mtDNA, an NLRP3 ligand. Myeloid-specific ablation of LPS-induced cytidine monophosphate kinase 2 (CMPK2), which is rate limiting for mtDNA synthesis, reduced ARDS severity without a direct effect on IL-6. Thus, inhibition of ATP and mtDNA synthesis is sufficient for ARDS amelioration.


Subject(s)
Adenosine Triphosphate/metabolism , DNA, Mitochondrial/biosynthesis , Inflammasomes/drug effects , Metformin/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pneumonia/prevention & control , Animals , COVID-19/metabolism , COVID-19/prevention & control , Cytokines/genetics , Cytokines/metabolism , DNA, Mitochondrial/metabolism , Humans , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Lipopolysaccharides/toxicity , Metformin/therapeutic use , Mice , Nucleoside-Phosphate Kinase/metabolism , Pneumonia/metabolism , Respiratory Distress Syndrome/chemically induced , Respiratory Distress Syndrome/prevention & control , SARS-CoV-2/pathogenicity
4.
Prog Biophys Mol Biol ; 166: 86-104, 2021 11.
Article in English | MEDLINE | ID: covidwho-1230706

ABSTRACT

RESEARCH PURPOSE: The sinus node (SN) is the heart's primary pacemaker. Key ion channels (mainly the funny channel, HCN4) and Ca2+-handling proteins in the SN are responsible for its function. Transcription factors (TFs) regulate gene expression through inhibition or activation and microRNAs (miRs) do this through inhibition. There is high expression of macrophages and mast cells within the SN connective tissue. 'Novel'/unexplored TFs and miRs in the regulation of ion channels and immune cells in the SN are not well understood. Using RNAseq and bioinformatics, the expression profile and predicted interaction of key TFs and cell markers with key miRs in the adult human SN vs. right atrial tissue (RA) were determined. PRINCIPAL RESULTS: 68 and 60 TFs significantly more or less expressed in the SN vs. RA respectively. Among those more expressed were ISL1 and TBX3 (involved in embryonic development of the SN) and 'novel' RUNX1-2, CEBPA, GLI1-2 and SOX2. These TFs were predicted to regulate HCN4 expression in the SN. Markers for different cells: fibroblasts (COL1A1), fat (FABP4), macrophages (CSF1R and CD209), natural killer (GZMA) and mast (TPSAB1) were significantly more expressed in the SN vs. RA. Interestingly, RUNX1-3, CEBPA and GLI1 also regulate expression of these cells. MiR-486-3p inhibits HCN4 and markers involved in immune response. MAJOR CONCLUSIONS: In conclusion, RUNX1-2, CSF1R, TPSAB1, COL1A1 and HCN4 are highly expressed in the SN but not miR-486-3p. Their complex interactions can be used to treat SN dysfunction such as bradycardia. Interestingly, another research group recently reported miR-486-3p is upregulated in blood samples from severe COVID-19 patients who suffer from bradycardia.


Subject(s)
COVID-19 , MicroRNAs , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , MicroRNAs/genetics , SARS-CoV-2 , Sinoatrial Node , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL